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1-Chloroalkyl-, 1-(2,2-dichloroalkyl)-, and 1-(trichloromethyl)-3,4-dihydroisoquinolines are synthesized
by chlorination of 1-alkyl-3,4-dihydroisoquinolines with N-chlorosuccinimide. These novel chlorinated
3,4-dihydroisoquinolines are suitable precursors for functionalized isoquinolines by aromatization
involving sequential 1,4-dehydrochlorination, tautomerization, and nucleophilic substitution.

� 2009 Elsevier Ltd. All rights reserved.
The frequent occurrence of the isoquinoline skeleton in a
large number of alkaloids and in several bioactive compounds
has led to significant interest in the synthesis of a variety of
functionalized isoquinolines, as well as their tetrahydro- and
dihydro-derivatives.1 The wide range of activities of the isoquin-
olines is remarkable and includes antibacterial, antimalarial, and
antipyretic activities (berberine alkaloids),2 anti-HIV activity
(michellamines),3 muscle relaxing activity (papaverine),4 heart
regulating activity (hygenamine),5 and activity against Parkin-
son’s disease (oliveroline).6 In addition, a number of halogenated
isoquinolines show interesting biological activities7 and are ver-
satile intermediates for the synthesis of isoquinoline natural
products.8 Therefore, the development of straightforward proce-
dures to synthesize functionalized isoquinolines as basic frame-
works for further elaboration continues to be an active
research topic.

The Bischler–Napieralski reaction is one of the most effective
methods for the synthesis of 3,4-dihydroisoquinoline deriva-
tives.9 It is also known that a-chloroimines are suitable building
blocks for the synthesis of a wide range of heterocyclic com-
pounds.10 Herein, we report a method combining these two
methodologies resulting in a new and convenient synthesis of
halogenated 3,4-dihydroisoquinolines and their use for further
elaboration of the isoquinoline skeleton.
ll rights reserved.

Kimpe).
3,4-Dihydroisoquinolines 2a–h11 were synthesized in 67–91%
yield (Table 1) from amides 1a–h by the Bischler–Napieralski
reaction (Scheme 1)12 via cyclocondensation with polyphospho-
ric acid (PPA) in toluene at reflux for 10–12 h. Under these con-
ditions, the synthesis of 3,4-dihydroisoquinolines 2i,j (R1 = H,
OMe, R2 = H, OMe, R3 = Cl) from the corresponding a-chloro car-
boxylic amides 1i,j was unsuccessful. However, it was found that
treatment of compounds 1i,j with phosphorus pentoxide in o-xy-
lene at reflux for 1–2 h gave rise to compounds 2i,j in 91–97%
yield (Table 1).

A well-known method for the a-chlorination of imines in-
volves their treatment with N-chlorosuccinimide.9,13 Thus 3,4-
dihydroisoquinolines 2a–h were treated with 2 equiv of N-chlo-
rosuccinimide in carbon tetrachloride. The reaction was initiated
by refluxing the mixture for 1 min after which the reaction was
stirred at room temperature for the indicated time (Scheme 1,
Table 1).

Under these conditions, 3,4-dihydroisoquinolines 2a–e,g,h
were smoothly chlorinated to yield 1,1-dichloromethyl-3,4-dihy-
droisoquinolines 3a–e,g,h in 85–98% yield. As the reaction rates
for successive introduction of the chlorine atoms are of the same
magnitude, the reaction could not be applied to produce mono-
chlorodihydroisoquinolines. Also, treatment of 3,4-dihydroiso-
quinolines 2a and 2b with 2 equiv of NCS led to the synthesis
of the dichloro derivatives (3a,b) together with the trichloro
derivatives (4a,b). However, the ratio of the two derivatives de-
pended largely on the temperature of the reaction. The dichloro



R1

R2 N

R1

R2

R3

N

R1

R2

1a-e,g-j
2a-j (67-99%) 3c-e,g,h

N

R1

R2

Cl

N

R1

R2

2 equiv. NCS

CCl4, 0 °C to Δ,
2-10 h

2a,b
3a,b

NN

2 equiv. NCS

CCl4, rt, 2 h

2f (79%) 3f (96%)

Cl

N

R1

R2

4a,b

N

R3

O
H

Cl
R3

4 equiv. PPA
toluene, Δ, 10-12 h 2 equiv. NCS

CCl4, rt, 2-3 h

Cl Cl
Cl

Cl

Cl

+

or
4 equiv. P2O5

o-xylene, Δ, 1-2 h

reaction of 2a:
0 °C, 2 h: 3a/4a

(52/32)rt, 2 h: 3a/4a
(86/0)

1f

N O
H

4 equiv. PPA
toluene, Δ, 12 h

Scheme 1.

Table 1
Bischler–Napieralski reaction of carboxylic amides 1 and chlorination of dihydroisoquinolines 2 with N-chlorosuccinimide

Product R1 R2 R3 Reaction conditions Yield (%) Mp or bp (mmHg)

2a H H H 4 equiv PPA, toluene, D, 10 h 67 110–116 �C (12)11

2b OMe OMe H 4 equiv PPA, toluene, D, 10 h 74 103–105 �C12b

2c H H Me 4 equiv PPA, toluene, D, 12 h 73 120–125 �C (13)11

2d OMe OMe Me 4 equiv PPA, toluene, D, 12 h 95 Colorless oil12b

2e H H Et 4 equiv PPA, toluene, D, 10 h 84 75–80 �C (0.2)11

2f / / / 4 equiv PPA, toluene, D, 12 h 79 65–70 �C (0.2)11

2g H H SEt 4 equiv PPA, toluene, D, 10 h 91 88–90 �C (0.02)
2h OMe OMe SEt 4 equiv PPA, toluene, D, 10 h 91 118–120 �C (0.03)
2i H H Cl 4 equiv P2O5, o-xylene, D, 1 h 91 160–161 �Ca

2j OMe OMe Cl 4 equiv P2O5, o-xylene, D, 2 h 97 207 �Ca,8d

3a H H H 2 equiv NCS, CCl4, 0 �C, 2 h 86 Colorless oil
4a H H H 4 equiv NCS, CCl4, D, 10 h 96 Colorless oil
4b OMe OMe H 4 equiv NCS, CCl4, D, 10 h 94 Colorless oil
3c H H Me 2 equiv NCS, CCl4, rt, 3 h 98 Colorless oil
3d OMe OMe Me 2 equiv NCS, CCl4, rt, 3 h 85 Colorless oil
3e H H Et 2 equiv NCS, CCl4, rt, 2 h 98 Colorless oil
3f / / / 2 equiv NCS, CCl4, rt, 2 h 96 Colorless oil
3g H H SEt 2 equiv NCS, CCl4, rt, 3 h 85 Colorless oil
3h OMe OMe SEt 2 equiv NCS, CCl4, rt, 3 h 98 Colorless oil

a Melting point of the HCl salt.

J. Jacobs et al. / Tetrahedron Letters 50 (2009) 3698–3701 3699
derivative 3a and the trichloro derivative 4a were obtained in a
52/32 ratio at room temperature and in an 86/0 ratio at 0 �C.
The trichloro derivative 4a could be obtained selectively in 96%
yield upon treatment of compound 2a with 4 equiv of NCS in
CCl4 at reflux. In the case of 3,4-dihydroisoquinoline 2b, the tri-
chloro-3,4-dihydroisoquinoline 4b was obtained similarly in 94%
yield.

The conversion of 1-(dichloromethyl)-6,7-dimethoxy-3,4-dihy-
droisoquinoline 3b, prepared in 64% yield by Bischler–Napieralski
reaction of N-homoveratryl-1,1-dichloroacetamide, into the corre-
sponding isoquinoline in 80–94% yield by treatment with base has
been demonstrated.14 Therefore, the dichloro-3,4-dihydroisoquin-
olines 3a,c,e were treated with different alkoxides in order to ob-
tain the isoquinolines 5. Treatment of compounds 3a,c,e with
4 equiv of sodium methoxide (2 N) in methanol or 4 equiv of so-
dium ethoxide (1 N) in ethanol under reflux for 4–16 h resulted
in the synthesis of isoquinolines 5a,b,d,e in 73–94% yield (Table
2). The mechanism of the aromatization of the dichloro-3,4-dihy-
droisoquinolines 3 is outlined in Scheme 2. In the presence of base,
compounds 3 are deprotonated at the 3-position, followed by 1,4-
dehydrochlorination to give 2-azadienes 6. These intermediates
are deprotonated again at the 4-position and are converted to com-
pounds 7, which undergo a subsequent substitution by methoxide
to produce compounds 5. In the case of the trichloroisoquinoline
4a, the same mechanism applies and is followed by a second sub-
stitution of the residual chloride by methoxide leading to the for-
mation of 5c in 70% yield.

The substitution reaction of chloroisoquinolines 7 is, however,
dependent on the nucleophilicity of the reagent. When com-
pounds 3b and 3c were treated with three equivalents of potas-
sium tert-butoxide (low nucleophilicity) in THF under reflux for
6 h, 1-vinyl-isoquinolines 8a,b were formed by dehydrochlorina-
tion in 75–88% yield (Scheme 3). In the case of monoc-
hloromethyldihydroisoquinolines, treatment of 2i,j with 3 equiv
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Table 2
Synthesis of isoquinolines 5 upon treatment of dichloro-3,4-dihydroisoquinolines 3a,c,e and trichloro-3,4-dihydroisoquinoline 4a with different alkoxides
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Product Substrate R1 R2 R3 R4 R5 Reaction conditions Yield of 5 (%)

5a 3a H H H 4 equiv NaOMe in MeOH (2 N), D, 4 h 80
H H H H Me

5b 3a H H H 4 equiv NaOEt in EtOH (1 N), D, 4 h 94
H H H H Et

5c 4a H H Cl 4 equiv NaOMe in MeOH (2 N), D, 4 h 70
H H H OMe Me

5d 3c H H Me 4 equiv NaOMe in MeOH (2 N), D, 16 h 75
H H Me H Me

5e 3e H H Et 4 equiv. NaOMe in MeOH (2 N), D, 4 h 73
H H Et H Me
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of potassium tert-butoxide in diethyl ether at room temperature
for 30 h led to 1-methylisoquinolines 10a,b in 84–88% yield
(Scheme 4).

In conclusion, 3,4-dihydroisoquinolines 2 were chlorinated
using NCS in CCl4 leading to new dichlorinated-3,4-dihydroiso-
quinolines 3 in 67–97% yield, which were subsequently converted
to the novel alkoxylated isoquinolines 5 on treatment with meth-
oxide or ethoxide.15 Depending on the substitution pattern at the
1-position, 1-vinylisoquinolines, and 1-methylisoquinolines could
be obtained, selectively.
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