Tetrahedron Letters 50 (2009) 3698–3701

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

1,4-Dehydrochlorination of 1-(1-haloalkyl)-3,4-dihydroisoquinolines as a convenient route to functionalized isoquinolines

Jan Jacobs ^a, Tuyen Nguyen Van ^a, Christian V. Stevens ^a, Peter Markusse ^a, Paul De Cooman ^a, Leendert Maat ^b, Norbert De Kimpe ^{a,}*

a Department of Organic Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium ^b Laboratory for Biocatalysis and Organic Chemistry, Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands

article info

Article history: Received 27 December 2008 Revised 23 March 2009 Accepted 31 March 2009 Available online 5 April 2009

Keywords: Halogenated 3,4-dihydroisoquinolines Isoquinolines 1,4-Dehydrochlorination

ABSTRACT

1-Chloroalkyl-, 1-(2,2-dichloroalkyl)-, and 1-(trichloromethyl)-3,4-dihydroisoquinolines are synthesized by chlorination of 1-alkyl-3,4-dihydroisoquinolines with N-chlorosuccinimide. These novel chlorinated 3,4-dihydroisoquinolines are suitable precursors for functionalized isoquinolines by aromatization involving sequential 1,4-dehydrochlorination, tautomerization, and nucleophilic substitution.

- 2009 Elsevier Ltd. All rights reserved.

The frequent occurrence of the isoquinoline skeleton in a large number of alkaloids and in several bioactive compounds has led to significant interest in the synthesis of a variety of functionalized isoquinolines, as well as their tetrahydro- and dihydro-derivatives.[1](#page-3-0) The wide range of activities of the isoquinolines is remarkable and includes antibacterial, antimalarial, and antipyretic activities (berberine alkaloids),² anti-HIV activity (michellamines), 3 muscle relaxing activity (papaverine), 4 heart regulating activity (hygenamine), 5 and activity against Parkinson's disease (oliveroline).⁶ In addition, a number of halogenated isoquinolines show interesting biological activities⁷ and are versatile intermediates for the synthesis of isoquinoline natural products.[8](#page-3-0) Therefore, the development of straightforward procedures to synthesize functionalized isoquinolines as basic frameworks for further elaboration continues to be an active research topic.

The Bischler–Napieralski reaction is one of the most effective methods for the synthesis of 3,4-dihydroisoquinoline deriva-tives.^{[9](#page-3-0)} It is also known that α -chloroimines are suitable building blocks for the synthesis of a wide range of heterocyclic compounds[.10](#page-3-0) Herein, we report a method combining these two methodologies resulting in a new and convenient synthesis of halogenated 3,4-dihydroisoquinolines and their use for further elaboration of the isoquinoline skeleton.

* Corresponding author. E-mail address: norbert.dekimpe@UGent.be (N. De Kimpe).

3,4-Dihydroisoquinolines $2a-h^{11}$ $2a-h^{11}$ $2a-h^{11}$ were synthesized in 67-91% yield [\(Table 1\)](#page-1-0) from amides 1a–h by the Bischler–Napieralski reaction (Scheme 1)^{[12](#page-3-0)} via cyclocondensation with polyphosphoric acid (PPA) in toluene at reflux for 10–12 h. Under these conditions, the synthesis of 3,4-dihydroisoquinolines 2i,j $(R^1 = H,$ OMe, $R^2 = H$, OMe, $R^3 = Cl$) from the corresponding α -chloro carboxylic amides 1i,j was unsuccessful. However, it was found that treatment of compounds 1i,j with phosphorus pentoxide in o-xylene at reflux for $1-2$ h gave rise to compounds $2i, j$ in $91-97%$ yield ([Table 1\)](#page-1-0).

A well-known method for the α -chlorination of imines involves their treatment with N-chlorosuccinimide. $9,13$ Thus 3,4dihydroisoquinolines 2a–h were treated with 2 equiv of N-chlorosuccinimide in carbon tetrachloride. The reaction was initiated by refluxing the mixture for 1 min after which the reaction was stirred at room temperature for the indicated time ([Scheme 1,](#page-1-0) [Table 1](#page-1-0)).

Under these conditions, 3,4-dihydroisoquinolines 2a-e,g,h were smoothly chlorinated to yield 1,1-dichloromethyl-3,4-dihydroisoquinolines $3a-e,g,h$ in 85–98% yield. As the reaction rates for successive introduction of the chlorine atoms are of the same magnitude, the reaction could not be applied to produce monochlorodihydroisoquinolines. Also, treatment of 3,4-dihydroisoquinolines 2a and 2b with 2 equiv of NCS led to the synthesis of the dichloro derivatives $(3a,b)$ together with the trichloro derivatives (4a,b). However, the ratio of the two derivatives depended largely on the temperature of the reaction. The dichloro

^{0040-4039/\$ -} see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.03.211

^a Melting point of the HCl salt.

derivative 3a and the trichloro derivative 4a were obtained in a 52/32 ratio at room temperature and in an 86/0 ratio at 0 \degree C. The trichloro derivative 4a could be obtained selectively in 96% yield upon treatment of compound 2a with 4 equiv of NCS in $CCl₄$ at reflux. In the case of 3,4-dihydroisoquinoline 2b, the trichloro-3,4-dihydroisoquinoline 4b was obtained similarly in 94% yield.

The conversion of 1-(dichloromethyl)-6,7-dimethoxy-3,4-dihydroisoquinoline 3b, prepared in 64% yield by Bischler–Napieralski reaction of N-homoveratryl-1,1-dichloroacetamide, into the corresponding isoquinoline in 80–94% yield by treatment with base has been demonstrated[.14](#page-3-0) Therefore, the dichloro-3,4-dihydroisoquinolines 3a, c, e were treated with different alkoxides in order to obtain the isoquinolines 5. Treatment of compounds 3a,c,e with 4 equiv of sodium methoxide (2 N) in methanol or 4 equiv of sodium ethoxide (1 N) in ethanol under reflux for 4–16 h resulted in the synthesis of isoquinolines 5a,b,d,e in 73–94% yield [\(Table](#page-2-0) [2](#page-2-0)). The mechanism of the aromatization of the dichloro-3,4-dihydroisoquinolines 3 is outlined in [Scheme 2.](#page-2-0) In the presence of base, compounds 3 are deprotonated at the 3-position, followed by 1,4 dehydrochlorination to give 2-azadienes 6. These intermediates are deprotonated again at the 4-position and are converted to compounds 7, which undergo a subsequent substitution by methoxide to produce compounds 5. In the case of the trichloroisoquinoline 4a, the same mechanism applies and is followed by a second substitution of the residual chloride by methoxide leading to the formation of 5c in 70% yield.

The substitution reaction of chloroisoquinolines 7 is, however, dependent on the nucleophilicity of the reagent. When compounds 3b and 3c were treated with three equivalents of potassium tert-butoxide (low nucleophilicity) in THF under reflux for 6 h, 1-vinyl-isoquinolines 8a,b were formed by dehydrochlorination in 75–88% yield [\(Scheme 3\)](#page-2-0). In the case of monochloromethyldihydroisoquinolines, treatment of $2i$, with 3 equiv

Table 2

Synthesis of isoquinolines 5 upon treatment of dichloro-3,4-dihydroisoquinolines $3a,c,e$ and trichloro-3,4-dihydroisoquinoline 4a with different alkoxides

of potassium tert-butoxide in diethyl ether at room temperature for 30 h led to 1-methylisoquinolines 10a,b in 84–88% yield (Scheme 4).

In conclusion, 3,4-dihydroisoquinolines 2 were chlorinated using NCS in CCl₄ leading to new dichlorinated-3,4-dihydroisoquinolines 3 in 67–97% yield, which were subsequently converted to the novel alkoxylated isoquinolines 5 on treatment with methoxide or ethoxide.[15](#page-3-0) Depending on the substitution pattern at the 1-position, 1-vinylisoquinolines, and 1-methylisoquinolines could be obtained, selectively.

Acknowledgment

The authors are indebted to the 'Research Foundation—Flanders (FWO-Vlaanderen)' for financial support of this research.

Scheme 2.

Scheme 4.

References and notes

Haloaldehydes and α -Haloimines; Patai, S., Rappoport, Z., Eds.; John Wiley & Sons: New York, 1988; p 279.

- 11. Cannon, J. G.; Webster, G. L. J. Am. Pharm. Assoc. Sci. Ed. 1958, 47, 353–355.
- 12. (a) Bhattacharjya, A.; Chattopadhyay, P.; Bhaumik, M.; Pakrashi, S. C. J. Chem. Res. 1989, 228–229; (b) Zhao, B. X.; Yu, Y.; Eguchi, S. Org. Prep. Proced. Int. 1997, 29, 185–194.
- 13. (a) De Kimpe, N.; Verhé, R.; De Buyck, L.; Schamp, N. Synth. Commun. 1975, 5, 269–274; (b) Verhé, R.; De Kimpe, N.; De Buyck, L.; Schamp, N. Synthesis 1975, 455–456; (c) De Kimpe, N.; Verhé, R.; De Buyck, L.; Schamp, N. J. Org. Chem. 1978, 43, 2933–2935; (d) De Kimpe, N.; Verhé, R.; De Buyck, L.; Tukiman, S.; Schamp, N. Tetrahedron 1979, 35, 789–798.
- 14. Pawallek, D.; Bradsher, C. K. J. Org. Chem. 1960, 25, 281–282.
- 15. All new compounds were fully characterized on the basis of IR, MS, ¹H NMR and ¹³C NMR spectroscopy. Spectral data of selected compounds can be found below. Compound 3a: Colorless oil (purity >95%), no purification due to decomposition of the compound on silica gel; ¹H NMR (270 MHz, CDCl₃): δ 2.63 (2H, t, J = 7.5 Hz, H-4), 3.74 (2H, t, J = 7.5 Hz, H-3), 6.56 (1H, s, CHCl₂)
6.91–7.49 (3H, m, 3 × CH=), 7.69–7.81 (1H, m, CH=); ¹³C NMR (68 MHz CDCl₃): δ 25.5 (C-4), 47.0 (C-3), 71.1 (CHCl₂), 124.1 (=C_{quat}), 126.2 (CH=), 126.6 (CH=), 127.9 (CH=), 131.6 (CH=), 138.3 (=C_{quat}), 162.0 (C-1); IR (NaCl): v_{max} 1621 cm⁻¹; MS m/z (%): 213/215/217 (M⁺, 33), 178/180 (100), 151 (10), 150 (6), 149 (10). Compound 5a: Colorless oil, purification by flash chromatography on silica gel; ¹H NMR (270 MHz, CDCl₃): δ 3.38 (3H, s, OMe), 4.96 (2H, s, CH₂OMe), 7.29–7.70 (4H, m, 3 × CH= and H-4), 8.01–8.39 (1H, m, CH=), 8.41
(1H , d, J = 5.8 Hz, H-3); ¹³C NMR (68 MHz, CDCl₃): δ 58.3 (OMe), 75.0 (CH₂O) 120.9 (CH=), 125.5 (CH=), 127.0 (CH=), 127.1 (CH=), 127.2 (=C_{quat}), 129.9 (CH=), 136.3 (=C_{quat}), 141.6 (CH=), 157.0 (C-1); IR (NaCl): v_{max} 1622, 1582, 1560, 1450, 1189, 1100 cm⁻¹; MS m/z (%): no M⁺, 149 (6), 146 (6), 115 (13), 43 (100). Anal. Calcd for $C_{11}H_{11}$ NO: C, 76.28; H, 6.40; N, 8.09. Found: C, 76.46; H, 6.58; N, 7.88.
- 1. (a) Kametani, T. The Total Syntheses of Isoquinoline Alkaloids. In The Total Synthesis of Natural Products; Apsimon, J., Ed.; John Wiley: New York, 1977; Vol. 3, pp 1–127; (b) Alvarez, M.; Joule, J. A. Isoquinolines. In Science of Synthesis; Black, D., Ed.; Thieme: Germany, 2005; Vol. 15, pp 661–838.
- 2. Bjorklund, J. A.; Frenzel, T.; Rueffer, M.; Kobayashi, M.; Mocek, U.; Fox, C.; Beale, J. M.; Gröger, S.; Zenk, M. H.; Floss, H. G. J. Am. Chem. Soc. 1995, 117, 1533–1545.
- 3. Hoye, T. R.; Chen, M. Z.; Hoang, B.; Mi, L.; Priest, O. P. J. Org. Chem. 1999, 64, 7184–7201.
- 4. Nawrath, H. J. Pharmacol. Exp. Ther. 1981, 218, 544–549.
- 5. Masaki, N.; Lizuka, H.; Yokota, M.; Ochiai, A. J. Chem. Soc., Perkin Trans. 1 1977, 717–719.
- 6. Kametani, T.; Honda, T. Alkaloids 1985, 24, 153–251.
- 7. Nair, M. D.; Premila, M. S. In Halogenated and Metallated Isoquinolines and Their Hydrogenated Derivatives in the Chemistry of Heterocyclic Compounds (Isoquinolines Part 2); Kathawalla, F. G., Coppola, G. M., Schuster, H. F., Eds.; $\frac{1}{2}$ John Wiley & Sons: New York, 1990; pp 1–533.
- 8. (a) Atanes, N.; Castedo, L.; Cobas, A.; Guitian, E.; Saa, C.; Saa, J. M. Tetrahedron 1989, 45, 7947–7956; (b) Orito, K.; Miyazawa, M.; Suginome, H. Synlett 1994, 245–246; (c) Venkov, A. P.; Statkova, S. M. Synth. Commun. 1991, 21, 1511– 1520; (d) Georgieva, A.; Stanoeva, E.; Spassov, S.; Macicek, J.; Angelova, O.; Haimova, M.; De Kimpe, N. Tetrahedron 1991, 47, 3375–3388.
- 9. Whaley, W. M.; Govindachari, T. R. Org. React. 1951, 6, 74–150.
- 10. (a) De Kimpe, N.; Verhé, R.; De Buyck, L.; Schamp, N. J. Org. Chem. 1980, 45, 5319–5325; (b) De Kimpe, N.; Verhé, R.; De Buyck, L.; Schamp, N. Org. Prep. Proced. Int. 1980, 12, 49–180; (c) De Kimpe, N.; Sulmon, P.; Verhé, R.; De Buyck, L.; Schamp, N. J. Org. Chem. 1983, 48, 4320–4326; (d) De Kimpe, N.; Sulmon, P.; Moëns, L.; Schamp, N.; Declercq, J. P.; Van Meerssche, M. J. Org. Chem. 1986, 51, 3839–3848; (e) De Kimpe, N.; Verhé, R. In The Chemistry of a-Haloketones, a-